Now showing 1 - 6 of 6
No Thumbnail Available
Publication

Caveolin-1-dependent tenascin C inclusion in extracellular vesicles is required to promote breast cancer cell malignancy

2023 , America Campos , Renato Burgos-Ravanal , Lorena Lobos-González , Ricardo Huilcamán , María Fernanda González , Jorge Díaz , Albano Cáceres Verschae , Juan Pablo Acevedo , Macarena Carrasco , Francisca Sepúlveda , Emanuel Jeldes , Manuel Varas-Godoy , Lisette Leyton , Andrew FG Quest

Background: Elevated expression of CAV1 in breast cancer increases tumor progression. Extracellular vesicles (EVs) from CAV1-expressing MDA-MB-231 breast cancer cells contain Tenascin C (TNC), but the relevance of TNC remained to be defined. Methods: EVs were characterized by nanotracking analysis, microscopy and western blotting. The uptake of EVs by cells was studied using flow cytometry. The effects of EVs on breast cancer cells were tested in migration, invasion, colony formation and in vivo assays. Results: EVs were taken up by cells; however, only those containing TNC promoted invasiveness. In vivo, EVs lacking TNC ceased to promote tumor growth. Conclusion: CAV1 and TNC contained in breast cancer cell-derived EVs were identified as proteins that favor progression of breast cancer.

No Thumbnail Available
Publication

Lactadherin: From a Well-Known Breast Tumor Marker to a Possible Player in Extracellular Vesicle-Mediated Cancer Progression

2022 , Eduardo Durán-Jara , Tamara Vera-Tobar , Lorena De Lourdes Lobos-González

Lactadherin is a secreted glycoprotein associated with the milk fat globule membrane, which is highly present in the blood and in the mammary tissue of lactating women. Several biological functions have been associated with this protein, mainly attributable to its immunomodulatory role promoting phagocyte-mediated clearance of apoptotic cells. It has been shown that lactadherin also plays important roles in cell adhesion, the promotion of angiogenesis, and tissue regeneration. On the other hand, this protein has been used as a marker of breast cancer and tumor progression. Recently, high levels of lactadherin has been associated with poor prognosis and decreased survival, not only in breast cancer, but also in melanoma, ovarian, colorectal, and other types of cancer. Although the mechanisms responsible for the tumor-promoting effects attributed to lactadherin have not been fully elucidated, a growing body of literature indicates that lactadherin could be a promising therapeutic target and/or biomarker for breast and other tumors. Moreover, recent studies have shown its presence in extracellular vesicles derived from cancer cell lines and cancer patients, which was associated with cancer aggressiveness and worse prognosis. Thus, this review will focus on the link between lactadherin and cancer development and progression, its possible use as a cancer biomarker and/or therapeutic target, concluding with a possible role of this protein in cellular communication mediated by extracellular vesicles

No Thumbnail Available
Publication

Helicobacter pylori outer membrane vesicles induce astrocyte reactivity through nuclear factor-κappa B activation and cause neuronal damage in vivo in a murine model

2023 , Esteban Palacios , Lorena Lobos-González , Simón Guerrero , Marcelo J. Kogan , Baohai Shao , Jay W. Heinecke , Andrew F. G. Quest , Lisette Leyton , Manuel Valenzuela-Valderrama

Abstract Background Helicobacter pylori (Hp) infects the stomach of 50% of the world’s population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. Methods Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), βIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. Results Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVβ3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. Conclusions OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.

No Thumbnail Available
Publication

Electrospun Poly(acrylic acid-co-4-styrene sulfonate) as Potential Drug-Eluting Scaffolds for Targeted Chemotherapeutic Delivery Systems on Gastric (AGS) and Breast (MDA-Mb-231) Cancer Cell Lines

2022 , Andrónico Neira-Carrillo , Ignacio A. Zárate , Eddie Nieto , Nicole Butto-Miranda , Lorena Lobos-González , Matias Del Campo-Smith , Daniel A. Palacio , Bruno F. Urbano

Potential drug-eluting scaffolds of electrospun poly(acrylic acid-co-styrene sulfonate) P(AA-co-SS) in clonogenic assays using tumorigenic gastric and ovarian cancer cells were tested in vitro. Electrospun polymer nanofiber (EPnF) meshes of PAA and PSSNa homo- and P(AA-co-SS) copolymer composed of 30:70, 50:50, 70:30 acrylic acid (AA) and sodium 4-styrene sulfonate (SSNa) units were performed by electrospinning (ES). The synthesis, structural and morphological characterization of all EPnF meshes were analyzed by optical and electron microscopy (SEM-EDS), infrared spectroscopy (FTIR), contact angle, and X-ray diffraction (XRD) measurements. This study shows that different ratio of AA and SSNa of monomers in P(AA-co-SS) EPnF play a crucial role in clonogenic in vitro assays. We found that 50:50 P(AA-co-SS) EPnF mesh loaded with antineoplastic drugs can be an excellent suppressor of growth-independent anchored capacities in vitro assays and a good subcutaneous drug delivery system for chemotherapeutic medication in vivo model for surgical resection procedures in cancer research.

No Thumbnail Available
Publication

EV-miRNA-Mediated Intercellular Communication in the Breast Tumor Microenvironment

2023 , Francisca Sepúlveda , Cristina Mayorga-Lobos , Kevin Guzmán , Eduardo Durán-Jara , Lorena Lobos-González

Cancer research has prioritized the study of the tumor microenvironment (TME) as a crucial area of investigation. Understanding the communication between tumor cells and the various cell types within the TME has become a focal point. Bidirectional communication processes between these cells support cellular transformation, as well as the survival, invasion, and metastatic dissemination of tumor cells. Extracellular vesicles are lipid bilayer structures secreted by cells that emerge as important mediators of this cell-to-cell communication. EVs transfer their molecular cargo, including proteins and nucleic acids, and particularly microRNAs, which play critical roles in intercellular communication. Tumor-derived EVs, for example, can promote angiogenesis and enhance endothelial permeability by delivering specific miRNAs. Moreover, adipocytes, a significant component of the breast stroma, exhibit high EV secretory activity, which can then modulate metabolic processes, promoting the growth, proliferation, and migration of tumor cells. Comprehensive studies investigating the involvement of EVs and their miRNA cargo in the TME, as well as their underlying mechanisms driving tumoral capacities, are necessary for a deeper understanding of these complex interactions. Such knowledge holds promise for the development of novel diagnostic and therapeutic strategies in cancer treatment.

No Thumbnail Available
Publication

Extracellular Vesicles as Mediators of Cancer Disease and as Nanosystems in Theranostic Applications

2021 , Renato Burgos-Ravanal , América Campos , Magda C. Díaz-Vesga , María Fernanda González , Daniela León , Lorena Lobos-González , Lisette Leyton , Marcelo J. Kogan , Andrew F. G. Quest

Cancer remains a leading cause of death worldwide despite decades of intense efforts to understand the molecular underpinnings of the disease. To date, much of the focus in research has been on the cancer cells themselves and how they acquire specific traits during disease development and progression. However, these cells are known to secrete large numbers of extracellular vesicles (EVs), which are now becoming recognized as key players in cancer. EVs contain a large number of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are actively secreted by many different cell types. In the last two decades, a considerable body of evidence has become available indicating that EVs play a very active role in cell communication. Cancer cells are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the behavior of target cells. For instance, more aggressive cancer cells can transfer their “traits” to less aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate those cells in a process referred to as “cell competition”. This review discusses how EVs participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as “the hallmarks of cancer” defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play an important role in drug resistance, and these more recent advances may explain, at least in part, why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use of EVs for therapeutic and prognostic purposes in cancer.