Options
Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations
Journal
Nature Medicine
ISSN
1078-8956
1546-170X
Date Issued
2024
Author(s)
Sebastian Moguilner
Sandra Baez
Hernan Hernandez
Joaquín Migeot
Agustina Legaz
Raul Gonzalez-Gomez
Francesca R. Farina
Pavel Prado
Jhosmary Cuadros
Enzo Tagliazucchi
Florencia Altschuler
Marcelo Adrián Maito
María E. Godoy
Josephine Cruzat
Pedro A. Valdes-Sosa
Francisco Lopera
John Fredy Ochoa-Gómez
Alfredis Gonzalez Hernandez
Jasmin Bonilla-Santos
Rodrigo A. Gonzalez-Montealegre
Renato Anghinah
Luís E. d’Almeida Manfrinati
Sol Fittipaldi
Vicente Medel
Daniela Olivares
Görsev G. Yener
Javier Escudero
Claudio Babiloni
Robert Whelan
Bahar Güntekin
Harun Yırıkoğulları
Hernando Santamaria-Garcia
Alberto Fernández Lucas
David Huepe
Gaetano Di Caterina
Marcio Soto-Añari
Agustina Birba
Agustin Sainz-Ballesteros
Carlos Coronel-Oliveros
Amanuel Yigezu
Eduar Herrera
Daniel Abasolo
Kerry Kilborn
Nicolás Rubido
Ruaridh A. Clark
Ruben Herzog
Deniz Yerlikaya
Kun Hu
Mario A. Parra
Adolfo M. García
Diana L. Matallana
José Alberto Avila-Funes
Nilton Custodio
Juan F. Cardona
Pablo Barttfeld
Ignacio L. Brusco
Martín A. Bruno
Ana L. Sosa Ortiz
Stefanie D. Pina-Escudero
Leonel T. Takada
Elisa Resende
Katherine L. Possin
Maira Okada de Oliveira
Alejandro Lopez-Valdes
Brian Lawlor
Ian H. Robertson
Kenneth S. Kosik
Claudia Duran-Aniotz
Victor Valcour
Jennifer S. Yokoyama
Bruce Miller
Agustin Ibanez
Type
journal-article
Abstract
<jats:title>Abstract</jats:title><jats:p>Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (<jats:italic>R</jats:italic>² = 0.37, <jats:italic>F</jats:italic>² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.</jats:p>