Now showing 1 - 10 of 11
No Thumbnail Available
Publication

Reduction of nicotine and ethanol intake in alcohol-preferring (UChB) female rats by the α4β2 nicotinic acetylcholine receptor partial agonists 5-bromocytisine and cytisine

2023 , María Elena Quintanilla , Mario Rivera-Meza , Pablo Berríos-Cárcamo , Bruce K. Cassels

No Thumbnail Available
Publication

Effect of human mesenchymal stem cell secretome administration on morphine self-administration and relapse in two animal models of opioid dependence

2022 , María Elena Quintanilla , Mauricio Quezada , Paola Morales , BERRIOS CARCAMO, PABLO ANDRES , Mario Herrera-Marschitz , EZQUER, EDUARDO MARCELO , Daniela Santapau , Israel Yacard, Yedy , EZQUER, EDUARDO FERNANDO

AbstractThe present study investigates the possible therapeutic effects of human mesenchymal stem cell-derived secretome on morphine dependence and relapse. This was studied in a new model of chronic voluntary morphine intake in Wistar rats which shows classic signs of morphine intoxication and a severe naloxone-induced withdrawal syndrome. A single intranasal-systemic administration of MSCs secretome fully inhibited (>95%; p < 0.001) voluntary morphine intake and reduced the post-deprivation relapse intake by 50% (p < 0.02). Since several studies suggest a significant genetic contribution to the chronic use of many addictive drugs, the effect of MSCs secretome on morphine self-administration was further studied in rats bred as high alcohol consumers (UChB rats). Sub-chronic intraperitoneal administration of morphine before access to increasing concentrations of morphine solutions and water were available to the animals, led UChB rats to prefer ingesting morphine solutions over water, attaining levels of oral morphine intake in the range of those in the Wistar model. Intranasally administered MSCs secretome to UChB rats dose-dependently inhibited morphine self-administration by 72% (p < 0.001); while a single intranasal dose of MSC-secretome administered during a morphine deprivation period imposed on chronic morphine consumer UChB rats inhibited re-access morphine relapse intake by 80 to 85% (p < 0.0001). Both in the Wistar and the UChB rat models, MSCs-secretome administration reversed the morphine-induced increases in brain oxidative stress and neuroinflammation, considered as key engines perpetuating drug relapse. Overall, present preclinical studies suggest that products secreted by human mesenchymal stem cells may be of value in the treatment of opioid addiction.

No Thumbnail Available
Publication

Extracellular Cysteines Are Critical to Form Functional Cx46 Hemichannels

2022 , Ainoa Fernández-Olivares , Eduardo Durán-Jara , Daniel A. Verdugo , Mariana C. Fiori , Guillermo A. Altenberg , Jimmy Stehberg , Iván Alfaro , CALDERON GIADROSIC, JUAN FRANCISCO , Mauricio A. Retamal

Connexin (Cxs) hemichannels participate in several physiological and pathological processes, but the molecular mechanisms that control their gating remain elusive. We aimed at determining the role of extracellular cysteines (Cys) in the gating and function of Cx46 hemichannels. We studied Cx46 and mutated all of its extracellular Cys to alanine (Ala) (one at a time) and studied the effects of the Cys mutations on Cx46 expression, localization, and hemichannel activity. Wild-type Cx46 and Cys mutants were expressed at comparable levels, with similar cellular localization. However, functional experiments showed that hemichannels formed by the Cys mutants did not open either in response to membrane depolarization or removal of extracellular divalent cations. Molecular-dynamics simulations showed that Cys mutants may show a possible alteration in the electrostatic potential of the hemichannel pore and an altered disposition of important residues that could contribute to the selectivity and voltage dependency in the hemichannels. Replacement of extracellular Cys resulted in “permanently closed hemichannels”, which is congruent with the inhibition of the Cx46 hemichannel by lipid peroxides, through the oxidation of extracellular Cys. These results point to the modification of extracellular Cys as potential targets for the treatment of Cx46-hemichannel associated pathologies, such as cataracts and cancer, and may shed light into the gating mechanisms of other Cx hemichannels.

No Thumbnail Available
Publication

A dual mechanism fully blocks ethanol relapse: Role of vagal innervation

2022 , María Elena Quintanilla , EZQUER, EDUARDO FERNANDO , Paola Morales , Daniela Santapau , EZQUER, EDUARDO MARCELO , Mario Herrera‐Marschitz , Yedy Israel

No Thumbnail Available
Publication

A dual treatment blocks alcohol binge-drinking relapse: Microbiota as a new player

2022 , EZQUER, EDUARDO FERNANDO , María Elena Quintanilla , Paola Morales , Daniela Santapau , MUNITA SEPULVEDA, JOSE MANUEL , Mario Herrera-Marschitz , EZQUER, EDUARDO MARCELO , Francisco Moya-Flores , Yedy Israel

No Thumbnail Available
Publication

Exome Sequencing Identifies Genetic Variants Associated with Extreme Manifestations of the Cardiovascular Phenotype in Marfan Syndrome

2022 , Yanireth Jimenez , Cesar Paulsen , Eduardo Turner , Sebastian Iturra , Oscar Cuevas , Guillermo Lay-son , REPETTO LISBOA, MARIA GABRIELA , Marcelo Rojas , CALDERON GIADROSIC, JUAN FRANCISCO

Marfan Syndrome (MFS) is an autosomal dominant condition caused by variants in the fibrillin-1 (FBN1) gene. Cardinal features of MFS include ectopia lentis (EL), musculoskeletal features and aortic root aneurysm and dissection. Although dissection of the ascending aorta is the main cause of mortality in MFS, the clinical course differs considerably in age of onset and severity, even among individuals who share the same causative variant, suggesting the existence of additional genetic variants that modify the severity of the cardiovascular phenotype in MFS. We recruited MFS patients and classified them into severe (n = 8) or mild aortic phenotype (n = 14) according to age of presentation of the first aorta-related incident. We used Exome Sequencing to identify the genetic variants associated with the severity of aortic manifestations and we performed linkage analysis where suitable. We found five genes associated with severe aortic phenotype and three genes that could be protective for this phenotype in MFS. These genes regulate components of the extracellular matrix, TGFβ pathway and other signaling pathways that are involved in the maintenance of the ECM or angiogenesis. Further studies will be required to understand the functional effect of these variants and explore novel, personalized risk management and, potentially, therapies for these patients.

No Thumbnail Available
Publication

Genetics of spontaneous cervical and coronary artery dissections

2023 , Isabel Rada , CALDERON GIADROSIC, JUAN FRANCISCO , Gonzalo Martínez , MUÑOZ VENTURELLI, PAULA ANDREA

ObjectivesSpontaneous cervical artery dissections (SCeAD) and coronary artery dissections (SCoAD) are major causes of neurovascular and cardiovascular morbidity in young adults. Although multiple aspects of their etiology are still unknown, most consensuses are focused on the presence of constitutional genetic aspects and environmental triggers. Since recent evidence of genetic contribution points to a possible overlap between these conditions, we aimed to describe current information on SCeAD and SCoAD genetics and their potential shared pathological aspects.Materials and methodsA narrative review is presented. Publications in English and Spanish were queried using database search. The articles were evaluated by one team member in terms of inclusion criteria. After collecting, the articles were categorized based on scientific content.ResultsGiven that patients with SCeAD and SCoAD rarely present connective tissue disorders, other genetic loci are probably responsible for the increased susceptibility in some individuals. The common variant rs9349379 at PHACTR1 gene is associated with predisposition to pathologies of the arterial wall, likely mediated by variations in Endothelin-1 (ET-1) levels. The risk of arterial dissection may be increased for those who carry the rs9349379(A) allele, associated with lower expression levels of ET-1; however, the local effect of this vasomotor imbalance remains unclear. Sex differences seen in SCeAD and SCoAD support a role for sex hormones that could modulate risk, tilting the delicate balance and forcing vasodilator actions to prevail over vasoconstriction due to a reduction in ET-1 expression.ConclusionsNew evidence points to a common gene variation that could explain dissection in both the cervical and coronary vasculatures. To further confirm the risk conferred by the rs9349379 variant, genome wide association studies are warranted, hopefully in larger and ethnically diverse populations.

No Thumbnail Available
Publication

Amelioration of morphine withdrawal syndrome by systemic and intranasal administration of mesenchymal stem cell‐derived secretome in preclinical models of morphine dependence

2023 , Mauricio Quezada , Carolina Ponce , Pablo Berríos‐Cárcamo , Daniela Santapau , Javiera Gallardo , DE GREGORIO CONCHA, CRISTIAN ALEJANDRO , María Elena Quintanilla , Paola Morales , Mario Herrera‐Marschitz , EZQUER, EDUARDO MARCELO , Yedy Israel , Paula Andrés‐Herrera , Lucia Hipólito , EZQUER, EDUARDO FERNANDO

AbstractBackgroundMorphine is an opiate commonly used in the treatment of moderate to severe pain. However, prolonged administration can lead to physical dependence and strong withdrawal symptoms upon cessation of morphine use. These symptoms can include anxiety, irritability, increased heart rate, and muscle cramps, which strongly promote morphine use relapse. The morphine‐induced increases in neuroinflammation, brain oxidative stress, and alteration of glutamate levels in the hippocampus and nucleus accumbens have been associated with morphine dependence and a higher severity of withdrawal symptoms. Due to its rich content in potent anti‐inflammatory and antioxidant factors, secretome derived from human mesenchymal stem cells (hMSCs) is proposed as a preclinical therapeutic tool for the treatment of this complex neurological condition associated with neuroinflammation and brain oxidative stress.MethodsTwo animal models of morphine dependence were used to evaluate the therapeutic efficacy of hMSC‐derived secretome in reducing morphine withdrawal signs. In the first model, rats were implanted subcutaneously with mini‐pumps which released morphine at a concentration of 10 mg/kg/day for seven days. Three days after pump implantation, animals were treated with a simultaneous intravenous and intranasal administration of hMSC‐derived secretome or vehicle, and withdrawal signs were precipitated on day seven by i.p. naloxone administration. In this model, brain alterations associated with withdrawal were also analyzed before withdrawal precipitation. In the second animal model, rats voluntarily consuming morphine for three weeks were intravenously and intranasally treated with hMSC‐derived secretome or vehicle, and withdrawal signs were induced by morphine deprivation.ResultsIn both animal models secretome administration induced a significant reduction of withdrawal signs, as shown by a reduction in a combined withdrawal score. Secretome administration also promoted a reduction in morphine‐induced neuroinflammation in the hippocampus and nucleus accumbens, while no changes were observed in extracellular glutamate levels in the nucleus accumbens.ConclusionData presented from two animal models of morphine dependence suggest that administration of secretome derived from hMSCs reduces the development of opioid withdrawal signs, which correlates with a reduction in neuroinflammation in the hippocampus and nucleus accumbens.

No Thumbnail Available
Publication

Chronic Voluntary Morphine Intake Is Associated with Changes in Brain Structures Involved in Drug Dependence in a Rat Model of Polydrug Use

2023 , María Elena Quintanilla , Paola Morales , Daniela Santapau , Alba Ávila , Carolina Ponce , BERRIOS CARCAMO, PABLO ANDRES , OLIVARES, MARIA BELEN , Mario Herrera-Marschitz , EZQUER, EDUARDO MARCELO , Javiera Gallardo , Yedy Israel , EZQUER, EDUARDO FERNANDO

Chronic opioid intake leads to several brain changes involved in the development of dependence, whereby an early hedonistic effect (liking) extends to the need to self-administer the drug (wanting), the latter being mostly a prefrontal–striatal function. The development of animal models for voluntary oral opioid intake represents an important tool for identifying the cellular and molecular alterations induced by chronic opioid use. Studies mainly in humans have shown that polydrug use and drug dependence are shared across various substances. We hypothesize that an animal bred for its alcohol preference would develop opioid dependence and further that this would be associated with the overt cortical abnormalities clinically described for opioid addicts. We show that Wistar-derived outbred UChB rats selected for their high alcohol preference additionally develop: (i) a preference for oral ingestion of morphine over water, resulting in morphine intake of 15 mg/kg/day; (ii) marked opioid dependence, as evidenced by the generation of strong withdrawal signs upon naloxone administration; (iii) prefrontal cortex alterations known to be associated with the loss of control over drug intake, namely, demyelination, axonal degeneration, and a reduction in glutamate transporter GLT-1 levels; and (iv) glial striatal neuroinflammation and brain oxidative stress, as previously reported for chronic alcohol and chronic nicotine use. These findings underline the relevance of polydrug animal models and their potential in the study of the wide spectrum of brain alterations induced by chronic morphine intake. This study should be valuable for future evaluations of therapeutic approaches for this devastating condition.

No Thumbnail Available
Publication

A Mouse Systems Genetics Approach Reveals Common and Uncommon Genetic Modifiers of Hepatic Lysosomal Enzyme Activities and Glycosphingolipids

2023 , Anyelo Durán , David A. Priestman , Macarena Las Las Heras , Boris Rebolledo-Jaramillo , Valeria Olguín , CALDERON GIADROSIC, JUAN FRANCISCO , Silvana Zanlungo , Jaime Gutiérrez , Frances M. Platt , Andrés D. Klein

Identification of genetic modulators of lysosomal enzyme activities and glycosphingolipids (GSLs) may facilitate the development of therapeutics for diseases in which they participate, including Lysosomal Storage Disorders (LSDs). To this end, we used a systems genetics approach: we measured 11 hepatic lysosomal enzymes and many of their natural substrates (GSLs), followed by modifier gene mapping by GWAS and transcriptomics associations in a panel of inbred strains. Unexpectedly, most GSLs showed no association between their levels and the enzyme activity that catabolizes them. Genomic mapping identified 30 shared predicted modifier genes between the enzymes and GSLs, which are clustered in three pathways and are associated with other diseases. Surprisingly, they are regulated by ten common transcription factors, and their majority by miRNA-340p. In conclusion, we have identified novel regulators of GSL metabolism, which may serve as therapeutic targets for LSDs and may suggest the involvement of GSL metabolism in other pathologies.